Concept/Topics Summary for October 4, 2011	GPS/CCSS
Type I error: Reject the assumption of random variation $\left(\mathrm{H}_{\mathrm{o}}\right)$ when what we observed is indeed due to random variation. (False Positive)	N/A
Type II error: Fail to reject $\left(\mathrm{H}_{0}\right)$ when in actuality we should have rejected assumption of random variation. (False Negative)	N/A
Alpha α - Probability of Type I	N/A
Beta β - Probability of Type II	N/A
Type I and Type II probabilities inversely related	N/A
Identify consequences of committing Type I and Type II errors to determine which is most important error to minimize.	N/A
Sensitivity: P(+ \| condition present); Complement of false negative (Type II) Specificity: P(-\| condition NOT present); Complement of false positive	N/A
Power of Test: Probability that you reject the null hypothesis GIVEN that the null hypothesis is FALSE (Sensitivity)	N/A
Ways to represent/summarize data for two categorical variables: *Contingency Table *Side-by-side bar graph *Segmented bar graph	$\begin{gathered} \text { M7D1 } \\ \text { S-ID. } 5 \\ \text { S-ID. } 6 \end{gathered}$
How to summarize numerically: *proportions, percentages, and estimated probabilities *Marginal probabilities: for one category of one variable (out of the entire sample size) *Conditional probabilities: "inside of the table"; Conditioning upon one of the categories for a given variable; look for where the category of another variable intersects the subgroup being conditioned upon *Joint Probabilities (intersections); intersection of two categories out of the entire sample	M6D2 MM3D1 S-CP. 3
If no association between two categorical variables: conditional $=$ marginal $\mathrm{P}(\mathrm{~A} \mid \mathrm{C})=\mathrm{P}(\mathrm{~A})$	N/A
Relative Risk: The ratio of proportions for two groups. A	N/A

relative risk of 1 indicates the proportions are the same for each group.	
Simpson's Paradox: When you control for a 3 $3^{\text {rd }}$ variable, the association between explanatory and response variables reverse. (Refer to smoking study)	N/A

